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How did governmental interventions affect
the spread of COVID-19 in European
countries?
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Abstract

Background: To reduce the transmission of the severe acute respiratory syndrome coronavirus 2 in its first wave,
European governments have implemented successive measures to encourage social distancing. However, it
remained unclear how effectively measures reduced the spread of the virus. We examined how the effective-
contact rate (ECR), the mean number of daily contacts for an infectious individual to transmit the virus, among
European citizens evolved during this wave over the period with implemented measures, disregarding a priori
information on governmental measures.

Methods: We developed a data-oriented approach that is based on an extended Susceptible-Exposed-Infectious-
Removed (SEIR) model. Using the available data on the confirmed numbers of infections and hospitalizations, we
first estimated the daily total number of infectious-, exposed- and susceptible individuals and subsequently
estimated the ECR with an iterative Poisson regression model. We then compared change points in the daily ECRs
to the moments of the governmental measures.

Results: The change points in the daily ECRs were found to align with the implementation of governmental
interventions. At the end of the considered time-window, we found similar ECRs for Italy (0.29), Spain (0.24), and
Germany (0.27), while the ECR in the Netherlands (0.34), Belgium (0.35) and the UK (0.37) were somewhat higher.
The highest ECR was found for Sweden (0.45).

Conclusions: There seemed to be an immediate effect of banning events and closing schools, typically among the
first measures taken by the governments. The effect of additionally closing bars and restaurants seemed limited. For
most countries a somewhat delayed effect of the full lockdown was observed, and the ECR after a full lockdown
was not necessarily lower than an ECR after (only) a gathering ban.

Keywords: Effective-contact rate, COVID-19, Governmental interventions, Social distancing, Epidemic disease
modeling
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Background
To reduce the transmission of the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) in its first
wave (i.e., the period February to May in 2020),
European governments have implemented several non-
pharmaceutical interventions aimed at reducing the
number of contacts among individuals [1]. The imple-
mentation of these governmental measures differed per
country, but they followed a similar pattern (Appendix A).
Events involving large numbers of participants were first
suspended. Then the schools were closed, shortly followed
by closure of non-essential services like bars and restau-
rants. Finally, gathering was banned (Netherlands and
Germany) or citizens were forced to stay home (United
Kingdom (UK), Italy, Spain and Belgium). The latter inter-
vention was often followed up by further restrictions, e.g.
stricter surveillance by authorities. While in most coun-
tries these policies were applied to the entire nation, Italy
and Spain started to apply these measures locally in the
so-called ‘red zones’ (regions where the spread started).
Late March 2020, stabilization of the number of daily

new cases, deaths and hospitalizations was observed
after the implementation of the governmental measures.
These effects have been quantified in country-specific
studies in which the estimated reproduction number was
compared before, during and after measures were taken
[2, 3]. Measure-specific effects on the transmission in
the period February to March 2020 have also been esti-
mated for some European countries [1]. Those authors
analyzed the observed deaths and claimed that ordering
of lockdown, closure of schools, ban on public events
and encouragement of social distancing would reduce
the reproduction number by approximately 50, 20, 10
and 10%, respectively. Their work assumed that the rela-
tive improvement for these interventions was the same
across countries, and that measures had an immediate
and constant effect (thus excluding possible delays).
Another study looking at the same period used the num-
ber of newly confirmed infections, and showed that the
effect of venue closure, gathering ban, border closure,
work ban, public event ban, closure of schools and an
additional lockdown reduced the reproduction number
by approximately 36, 34, 31, 31, 23, 8 and 5%, respect-
ively. They also assumed homogeneous reductions
across countries and incorporated a fixed delay of 7 days
before an effect would be visible in the number of new
infections [4].
Measure-specific estimates of the reduction of the

virus spread differ among these two studies [1, 4]. This
is not surprising, since estimation of the influence of
governmental interventions is hindered by several ser-
ious limitations. Firstly, interventions may have had a
partially delayed effect and it is difficult to identify how
the effect of a measure changed over time. Restricting

changes in the contact-rate profiles to the moments of
interventions may lead to some false conclusions.
Alternatively, change-point models have been used to
study the number and moments in time of changes in
the spreading rate [5]. However, this approach does not
overcome the second limitation: the incompleteness of
data. Only a fraction of the infectious people were tested
such that the real number of infectious individuals was
largely unknown. Also the ‘recovery’ of non-hospitalized
contagious individuals was mostly non-recorded. Both
are important elements in the estimation of epidemic
spread models such as the Susceptible-Exposed-
Infected-Recovered (SEIR) model, to be able to deter-
mine (time-varying) contact rates and the reproduction
number [6, 7]. The third limitation concerns the trans-
mission times that are commonly assumed to be expo-
nential distributed in epidemic disease models [6], while
for Coronavirus Disease 2019 (COVID-19) it was shown
that the incubation period is better fitted by a Weibull
distribution [8–12].
To accommodate these three limitations for under-

standing change in transmission of COVID-19 in the
first wave, we have relaxed some assumptions of the
SEIR model and implemented a data-driven sequential
approach to estimate time-dependent contact-rate pro-
files, disregarding a priori information on governmental
measures. We were then able to compare the change
points in the contact-rate profiles to the moments at
which measures were implemented. This way, for each
country separately, we observed whether the influence of
measures was visible, immediate or delayed. The advan-
tage of our stratified country-specific analysis is that it
does not require harmonization of governmental inter-
ventions across countries, it does not impose similarity
across countries (e.g. decrease in the contact rate) and it
allows a flexible measure-delay effect per country rather
than imposing a fixed one. We illustrate our results for
seven European countries that adopted different
strategies.

Methods
Data collection
Daily counts of confirmed infections in the period
February to April were obtained from the online inter-
active dashboard hosted by the Johns Hopkins University
[13]. These numbers were cross-validated with other
sources (official sites of authorities and https://www.
worldometers.info/coronavirus/). The hospitalization
numbers were extracted from the official daily reports
released by the public health authorities separately for
each country (Table S2). Data collected on recoveries is
largely incomplete and was therefore not used in this
study. We collected data until 2020-04-09, that includes
information before, during, and after governmental
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interventions in the first wave, but does exclude relax-
ation of interventions. Additionally, we used data on the
mobility of communities made available by Google [14]
(Figs. S9-S15).

Epidemic disease model
We modelled the daily confirmed numbers of infections,
hospitalizations, and deaths per country with an ex-
tended and time-discretized SEIR model [6, 15] (Fig. 1),
such that the total population, of size N, can be distrib-
uted over the Susceptible (S), Exposed (E), Infectious (I)
and Removed (R) states (Fig. 1). We assumed that the
entire population was susceptible, as reported by the
World Health Organization [16].
A susceptible individual in S(t) can become exposed

(E(t)) after an effective contact with an infectious individ-
ual. There will be an incubation period of random length
before individuals become infectious and enter state I(t).
We assumed that this delay follows a Weibull distribution,
with a shape parameter equal to 2.32 and a scale param-
eter equal to 6.50 (giving an average delay of 5.76 days),
based on the preliminary study of 33 COVID-19 patients
[10]. A fraction ρ of these infectious individuals was
tested, IT(t), while the number of non-tested infected indi-
viduals, INT(t), was hidden (with I(t) = IT(t) + INT(t)).
The removed state R(t), R(t) = RT(t) + RNT(t), refers to

individuals that are no longer contagious (due to death or
recovery). The number of susceptible and exposed individ-
uals at day t was unknown. The number of removed
people was also only partially known, since infectious indi-
viduals were only followed-up when they were hospital-
ized or when they died from the disease.

Furthermore, the infectious period of infected individuals
(either tested or not) was unknown, so we assumed this
period to be random, following an exponential distribution
with a mean, γ − 1

I , of 2.3 days [17, 18]. The available infor-
mation at day t included the observed cumulative number
of confirmed infected individuals, Y(t) = IT(t) +HT(t) +
RT(t), and the daily number of new hospitalizations, ΔH+(t),
representing individuals that transited from IT(t) to HT(t).
Since the number of hospitalizations was known, we did
not use the transition rates γH and ω in this study. The bal-
ance equations for the transitions in the system presented
in Fig. 1 can be found in Appendix B.
The main parameter of interest was the effective-con-

tact rate (ECR), β(t), also known as the transmission
rate. The ECR can be interpreted as follows: The a priori
probability that an infectious person upon contact meets
a susceptible individual is S(t)/N. If we assume that every
contact between an infectious and a susceptible individ-
ual results in the transmission of the virus, then we can
view β(t) as the average number of contacts on day t. In
this case, the expected number of newly exposed individ-
uals that one infectious person will introduce is β(t)S(t)/
N. Since there are I(t) infectious individuals on day t,
I(t)β(t)S(t)/N newly exposed individuals are expected on
the same day. If we do not assume that all of the con-
tacts lead to the transmission of the virus, then β(t) can
be viewed as an effective number of contacts that leads
to newly exposed individuals. The ECR was assumed to
be time-dependent, since the introduction of different
governmental interventions over time may affect the
total number of contacts. The effective reproduction

Fig. 1 Schematic representation of the SEIR model. When there are both susceptible individuals, S(t), as well as infectious individuals, I(t), a
susceptible individual gets exposed E(t) at an exponential rate of β(t)S(t)/N. Once exposed it takes a Weibull distributed time before the individual
becomes infectious. The individual is tested with probability ρ, I(t), and might subsequently be hospitalized, H(t)). Infectious individuals that will
not be tested, INT(t), cannot be hospitalized. The infectious period of non-hospitalized infectious individuals is assumed to follow an Exponential
distribution after which the individuals are transferred to the removed states
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number Re(t) is commonly used to quantify the speed of
transmission and is a direct function of β(t) and the re-
covery rate γI [19, 20], see the mathematical expression
in Appendix C. During every day of the infectious
period, starting at t, an infectious individual is expected
to infect β(t) new individuals. Since the recovery rate γI
is not influenced by governmental interventions, and not
easy to estimate from the available data studied here,
β(t) is the quantity of interest when evaluating the effect
of interventions. For completeness we also report the es-
timates of Re(t) in Appendix C for the assumed value of
γI. Note that our main results in this research are in-
sensitive to the choice of γI due to our approximation of
I(t) over time, as described in the next section.

Parameter estimation
Statistical inference in SEIR models with latent S(t) and
E(t) classes have been well studied under the assumption
that I(t) is known [21]. Furthermore, it is generally as-
sumed that there are only a small number of changes in
the ECR.
In order to obtain an ECR profile per country, we per-

formed a stratified analysis in which we estimated β(t) at
day t ∈ {1, 2,…, n}. We did not account for demographic
characteristics but focused on the aggregated value for
different countries separately. We allowed β(t) to differ
every day, but since ECR estimates of subsequent days
are highly correlated we imposed the restriction that the
ECR profile is non-increasing: βðtÞ ¼ Pn

i¼t expðαiÞ, with
αi an unknown parameter. Based on the balance equa-
tions presented in Appendix B, we estimated the ECR
from the following set of equations:

E ΔY tð Þ½ � ¼ ρ
Xt

i¼0
pt − i � E ΔEþ ið Þ½ �

¼
Xt

i¼0
pt − i � ρ � I ið Þ � β ið Þ � S ið Þ=N ; ð1Þ

where Δ is the symbol for daily change in the values, i.e.
ΔU(t) =U(t) −U(t − 1), E+(t) = E(t) + Y(t) + INT(t) + RNT(t),
ρ the fraction of tested infected individuals, and pt is the
discretized Weibull probability that a susceptible individ-
ual becomes infectious t days after the beginning of the
exposure. In words, the expected daily increase in re-
ported cases equals a fraction ρ (as these are tested) of a
weighted average of the individuals that were exposed in
the days before. It is important to notice that the delay
between onset of infection and symptoms was thus dir-
ectly accounted for. Before we could estimate β(t) based
on eq. (1) we should approximate i). the daily number of
susceptible individuals S(t) and ii). the daily number of
infectious individuals I(t) as these were both unknown
and needed to be calculated from the observed data Y(t)
(or ΔY(t)) and ΔH+(t).

By adding up (1) over t and rearranging the elements
of the totals we found the expected value of the total
reported cases by day t,

E Y tð Þ½ � ¼
Xt

i¼1
E ΔY ið Þ½ �

¼
Xt

i¼1
ρ E ΔEþ ið Þ½ �∙

Xt

j¼i
pt − j

� �
: ð2Þ

Assuming that the Weibull probability was almost zero
for the first 24 h (which fitted with the reported results
[10]) and that ρ is known, the daily expected new expo-
sures ΔE+(t) were iteratively calculated from (2), with
ρΔE+(1) =ΔY(2)/p1 and ρΔE+(2) = (ΔY(3) − ρΔE+(1)p2)/
p1. To stabilize these calculations, we first smoothed the
daily cumulative number of confirmed infections Y(t)
using a three-parameter logistic growth curve [22].
Given the estimates of the daily number of newly ex-
posed individuals, we approximated the daily number of
susceptible individuals S(t), assuming that the total
population is susceptible [16], namely S(t) =N − E+(t).
To approximate I(t), we assumed that the hospitalized

individuals, HT(t), could no longer infect others because
they were quarantined. Then, the number of tested in-
fectious individuals IT(t) at day t were obtained directly
from the observed data Y(t) and ΔH+(t) by the equality
E½IT ðtÞ� ¼

Pt
i¼1ΔY ðiÞ � ~πt − i , where ~πt was the probabil-

ity that a tested infectious individual remained conta-
gious (i.e. not hospitalized or recovered) for more than t
days. Since none of the untested infectious individuals
were hospitalized, the expected total number of infec-
tious individuals at day t was calculated by assuming
that the proportion of tested individuals ρ is known. For
simplicity, we assumed that hospitalization takes place
on the same day of appearance of symptoms, such that
expected daily number of infectious individuals could be
written as E½IðtÞ� ¼ Pt

i¼1ðΔY ðiÞ=ρ − ΔHþðiÞÞ � πt − i ,
where πt is the probability that a non-hospitalized infec-
tious individual remains contagious (i.e. did not recover)
for more than t days. As the number of hospitalized in-
dividuals was small compared to the number of infec-
tious individuals this assumption will not influence the
results.
Finally, given the approximated values for i). S(t)

and ii). I(t), we assumed that the number of newly
exposed individuals ΔE+(t) at day t is Poisson distrib-
uted with expectation 0.5(I(t) + I(t + 1)) ∙ β(t) · 0.5(S(t) +
S(t + 1))/N. We averaged out the infectious and sus-
ceptible individuals at the start and end of day t to
improve our estimation. Then, ΔY(t), is also Poisson
distributed with mean E½ΔY ðtÞ� ¼ ρ

Pt
i¼0 pt − i � ½IðiÞ

þIðiþ 1Þ� � βðiÞ � ½SðiÞ þ Sðiþ 1Þ�=ð4NÞ: To estimate
β(t), we fitted for each country a Poisson regression
model to the daily increases of tested infected individ-
uals ΔY(t), selecting the data from the day of the first
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COVID-19 fatality in the country. We assumed that
β(t) did not change on the last day of our data and
included ρ as a separate parameter in the regression
analysis. If bαi was smaller than −4 (such that expðbαiÞ
< 0:02Þ , then we set β̂ðiÞ equal to β̂ði − 1Þ to over-
come numerical issues. Finally, we obtained confi-
dence intervals for the estimates by means of the
multivariate delta method. All estimations have been
performed in R version 3.6.3.

Sensitivity analyses
By estimating a daily β(t) the number of parameters
equals the number of observations for each country.
Therefore we did not draw inference on the other
transition-time parameters as is typically done [2, 5,
21]. Instead, to investigate the robustness of our ana-
lysis with respect to the choices for those parameters,
we conducted several sensitivity analyses. We changed
the mean infectious period from 2.3 to 4.6 days [23]
for all individuals, and only for the tested individuals.
We changed our mean incubation time to 6.4 days
(instead of 5.76 days [10]). Additionally, we tested the
influence of choosing a gamma distribution for the
infectious period and an exponential distribution for
the incubation time. We furthermore investigated the
scenario of pre-symptomatic transmission [8, 9, 24].
Finally, we studied the influence of the number of
susceptible individuals.

Governmental interventions
In the present study, we focused on four types of gov-
ernmental interventions that were trying to limit con-
tacts between inhabitants. Figure 2 shows the timing of
these four interventions for seven European countries. A
full list of governmental interventions can be found in
Table S1.

Results
The estimates of the daily ECR for each of the seven
countries, together with their 95% confidence intervals,
are provided in Fig. 3. The profiles of the corresponding
effective reproduction number are presented in Fig. S1.
All countries had a non-increasing profile of the ECR,

because of the model restriction, that consisted of a few
piecewise constant values. When measures had an im-
mediate effect on the ECR, we expected to see that the
times of change points coincided exactly with at least
one of the measures. However, due to the variability in
the data, it is very likely that a change point was esti-
mated just one (or two) day(s) after (or before) the real
date, since daily ECRs that were similar in a period were
merged to create the piece-wise constant ECRs. Then,
for smaller changes in ECRs, the distance in time be-
tween the implementation of measures and the change
point could become larger. In the majority of cases, we
did indeed see that the drop in the ECR happened
within one day of the implementation of at least one of
the measures, suggesting that this measure affected the

Fig. 2 Timing of interventions. Timing of four main governmental interventions (lockdown, restaurants closed, schools closed and events
suspended) for the seven European countries considered in this paper. Colors are representative for the countries, while symbols are
representative for the measures taken. For each of the considered measures, we have either a filled symbol (measure taken in the whole country),
or an empty symbol (measure taken in the ‘red zones’ or at a lower intensity)
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ECR, possibly in combination with measures imple-
mented few days earlier. We have linked the change
points in the ECR profile to the measures taken in each
country as described next.
In Italy we estimated a large decrease (to 1.60) after

the first measures (closure of schools and event ban in
the ‘red zone’) were implemented. Another serious de-
crease (to 1.28) occurred a day after the ‘red zone’ went
into a full lockdown and events were banned in the
whole country. A similar decrease (to 0.91) was found,
in correspondence with the ordering of a nationwide
lockdown. However, we estimated a further serious de-
crease (to 0.46), almost a week after the lockdown was

ordered. In this period, Italy enforced the lockdown with
increased police forces, assisted by the army (Appendix
A). For Spain, we estimated two large decreases. The
first change happened within a day since the banning of
events and closure of schools in the ‘red zone’
(3.14→1.18). The second effect (to 0.48) became visible
a week after the whole country went in lockdown. As in
Italy, the Spanish government seriously increased the
amount of police forces on the street days after ordering
the lockdown. In Germany the first set of official mea-
sures of banning events, railway traffic reduction and
closure of schools coincided with the first serious de-
crease in the ECR (2.02→0.68), one day before the ‘red-

Fig. 3 ECR profiles per country. The trend in the point estimates of the ECR β̂ðtÞ are presented as colored lines (country specific colors, following
the legend in Fig. 2). The black continuous lines represent the 95% confidence intervals of the point estimates. The gray vertical dashed lines
indicate the moments when the governmental measures were taken, with the corresponding symbol(s) (same symbols introduced in Fig. 2)
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zone’ Bavaria went in lockdown. Two days after a full
lockdown was ordered, we assessed a second change (to
0.31). For the UK, a first decrease in ECR (1.71→1.08)
was visible when the UK Chief Medical Officers raised
the risk-level to high (Appendix A), a measure that was
initially not considered in the present study (Fig. 2). A
second decrease in the ECR (to 0.74) was estimated after
the lockdown. The third and last decrease (to 0.37) was
not traceable to the mentioned four measures but might
be attributable to letters sent to 30 million households,
containing details on the lockdown, rules and health in-
formation. In the Netherlands the ECR decreased
(1.21→0.93) on the day after the schools and the restau-
rants were closed. A more serious drop (to 0.34) became
visible after gatherings were officially banned. In
Belgium, the estimated ECR did first decrease
(1.44→1.30) after events were banned and schools and
restaurants were closed. More than a week after the
lockdown was ordered, a serious decrease was estimated
(to 0.34). In Sweden, a decrease in the ECR (0.88→0.57)
became visible when the Swedish government warned its
citizens for the first time and banned large events. After
more restrictive measures (banning of smaller events)
were ordered, a small decrease (to 0.45) was estimated.
The dates of the change points in the ECR profile and
the measures that seemed to be associated with it are
summarized in Table 1. A comparison of the conse-
quences of different measures across countries is pre-
sented in the Discussion section.

In Table 2 we reported the estimated ECR before any

interventions were implemented ( β̂startÞ , and the final

ECR after all interventions were taken (β̂endÞ. The β̂start
varied largely across countries, from 0.88 for Sweden to

9.03 for Italy. However, the variability in β̂end is much
smaller ([0.24, 0.45]). We estimated similar ECR in Italy
(0.29), Spain (0.24), and Germany (0.27), while the ECR
in the Netherlands (0.34), Belgium (0.35) and the UK
(0.37) were somewhat higher. The ECR in Sweden
(0.45), where the least rigorous measures were imple-
mented, seemed to be the highest. The estimated aver-
age fraction of tested infectious individuals ρ can be
found in Table S3.
In Fig. 4, the daily observed number of new confirmed

infections ΔY(t) (the points in the graph) are shown to-
gether with the fit of our Poisson regression model (the
continuous lines) and their corresponding 95% predic-
tion intervals. The results of the sensitivity analyses can
be found in Figs. S2-S8, demonstrating that the obtained
ECR profiles were robust against violation of our
assumptions.

Discussion
In this study we have extended the SEIR model to allow
for general transition-time distributions and developed
an estimation strategy in which we first retrieved the la-
tent number of infectious and susceptible individuals per
day, and subsequently estimated the ECR per day. This

Table 1 Overview of the most significant changes in the ECR profiles. For each country we summarize which governmental

measures were taken in close proximity to the changes estimated in the ECR β̂. The numerical values of the β̂ before and after the
measures are presented together with the relative and absolute change

Country Date Measures ECR (β) change Relative change Absolute change

Italy 02–23 Closure of schools + banning events in red zone 9.14→ 1.60 0.83 7.54

03–07 Lockdown in red zone 1.56→ 1.28 0.18 0.28

03–10 Full lockdown 1.28→ 0.91 0.29 0.37

03–17 None (enforced police force) 0.91→ 0.46 0.49 0.45

Spain 03–10 Closure of schools + banning events in red zone 3.14→ 1.18 0.62 1.96

03–22 None (enforced police force) 1.18→ 0.48 0.59 0.70

Germany 03–15 Closure of schools + event banning (+ railway reduction) 2.02→ 0.68 0.66 1.34

03–25 Lockdown 0.68→ 0.31 0.54 0.37

UK 03–15 None (increased to high risk level) 1.71→ 1.08 0.37 0.63

03–24 Lockdown 1.08→ 0.74 0.32 0.34

03–31 None (information to public) 0.74→ 0.37 0.50 0.37

Netherlands 03–17 Closure of schools + restaurants (+ request to stay inside) 1.21→ 0.93 0.23 0.28

03–24 Lockdown (fines + enforced police force) 0.93→ 0.34 0.63 0.59

Belgium 03–13 Closure of schools + restaurants + banning events 1.44→ 1.30 0.10 0.14

03–25 None (lockdown extended) 1.30→ 0.34 0.74 0.96

Sweden 03–12 Banning events + warnings to public 0.88→ 0.57 0.35 0.21

03–29 Stricter measures banning events 0.57→ 0.45 0.21 0.12
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way, we did not make a priori assumptions on
consistency across countries and delays in the effect of
governmental interventions. The change points found in
Germany (15/3 and 25/3) do closely agree with the
change points found elsewhere (15/3 and 22/3) [5]. Our
findings show that change points in the daily ECRs over-
lap with moments of governmental interventions. Over-
all, the first set of measures taken by the governments
seems to have an immediate (although heterogeneous)
effect. This first set of measures typically included the
closure of schools and daycares, as well as banning
events. Implementing a full lockdown after the first set
of measures, either locally or nationally, seemed to coin-
cide with changes in the ECR, but in several countries
only when this was enforced with increased police sur-
veillance. Although the effect of closing schools and ban-
ning events has been demonstrated in previous studies
[1, 4], our findings suggested a stronger (combined) ef-
fect of the first set of measures than found before. On
the contrary, these studies estimated more serious effects
of a gathering bans, lockdowns, and closure of bars and
restaurants [1, 4]. These differences may be explained by
the additional model restrictions (constant contact rates,
country homogeneous-effect sizes, and fixed delay in the
effects) that these studies implemented. Therefore, they
could not determine whether the effect of the full lock-
down did change over time as we estimated. Our obser-
vation was in line with the Google mobility data
(Appendix F) that suggested that mobility did further re-
duce in the days after the ordering of the lockdown in
Italy, Spain and (less) in the UK and Belgium. The clos-
ure of bars and restaurants frequently coincided with the
moment of lockdown (Italy, Spain and Germany) or with
closing schools (UK, Netherlands, Belgium), thus it is
difficult to distinguish the effect of the different mea-
sures. In Italy and Spain, the combined measures had
only limited influence on the contact rate, and in
Sweden national restrictions on restaurant and bars had
no effect. So, it seemed unlikely that the closure of bars

and restaurants had an additional effect (to the previous
measures taken) on the ECR.
Our findings strongly suggested that the ECRs in Italy,

Spain, and Germany were very similar after all measures
were implemented. This was unexpected since more re-
strictive measures were taken in Italy and Spain, but it
was consistent with other findings [1]. The final ECRs
for the Netherlands, Belgium and the UK were also com-
parable but somewhat higher. The difference between
the two groups was not the result of lower compliance
to lockdown restrictions, since the Google mobility data
showed similar decreases in activity in Belgium and the
UK as observed in Spain and Italy. We did therefore
conclude that gathering bans (as ordered in Germany
and the Netherlands) were as effective as full lockdowns
(as implemented in Italy, Spain, UK and Belgium). The
value of the limiting ECR level for COVID-19 seems to
characterize a society in which citizens only have inter-
actions for essential needs (e.g. grocery shopping and
travel of healthcare workers). It is important to observe
that despite the fact that the ECRs of the countries were
comparable after all the interventions, the ECRs did ser-
iously differ in the period before interventions were im-
plemented. This suggests that the different interventions
did not have the same (absolute and relative) effect
across countries, as assumed in previous studies [1, 4].
The initial ECR in the UK, Belgium and the Netherlands
were similar suggesting the same order of daily contacts
which is in line with previous research on social contacts
[25]. The initial estimated ECR in Italy should be dealt
with caution as the daily increase in confirmed cases be-
fore the first death consist of many zeros.
Several limitations of our study need to be addressed.

First, our method did not provide estimates of effect
sizes for the different measures, contrarily to what is
done in previous papers [1, 4], and therefore our results
may seem more exploratory. We explicitly made this
choice, since interventions were often taken simultan-
eously and there was no information about the delay on
the effect of various measures. All measures try to dir-
ectly lower the ECR, but the success highly depends on
the compliance of the citizens [26]. This was supported
by the Google data, showing that reductions in mobility
do not align directly with implemented measures. We
did not take into account the mixed population (e.g. age
groups), but rather tried to estimate the ECR as a
country-specific average value. Effect heterogeneity of
interventions might thus be attributed to country-
specific demographics. Quantification of this effect het-
erogeneity and further explanation was outside the scope
of this study. A second limitation of our approach is the
implemented restriction, imposing non-increasing ECRs.
This choice was motivated to avoid additional oscilla-
tions in the parameter estimate due to the large

Table 2 ECR change. Estimates of the ECR at the start of the

considered time window, β̂start , and the rate at the end of the

window β̂end with corresponding standard errors

β̂start β̂end
Italy 9.031 (0.333) 0.290 (0.010)

Spain 3.266 (0.038) 0.240 (0.004)

Germany 2.017 (0.068) 0.271 (0.016)

UK 1.688 (0.037) 0.370 (0.005)

Netherlands 1.212 (0.067) 0.340 (0.019)

Belgium 1.440 (0.057) 0.340 (0.012)

Sweden 0.880 (0.032) 0.452 (0.011)
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variability present in the data (shown by the observations
outside the prediction intervals in Fig. 4), possibly a re-
sult of delays in testing and reporting. Thirdly, our ana-
lysis was based on a few assumptions (although
supported by other research), like the choice of distribu-
tions for the incubation and infectious periods, the num-
ber of susceptible individuals and absence of pre-
symptomatic transmission. The influence of our model-
ling assumptions was investigated in the sensitivity ana-
lysis (Appendix D) and did not seriously shift the change
points. Also, we did split infectious individuals into INT
and IT without any link between these classes. The alter-
native is that everyone would pass the INT state before

entering IT, but then we could have all kinds of delays in
between depending on the capacity of testing. We be-
lieve that this is the role of E(t). Lastly, we assumed that
the fraction of tested infectious individuals ρ was un-
known but constant, while this changed with test pol-
icies within countries. It is important to mention that a
change in ρ over timescales larger than 11 days will not
have a serious effect on our estimation (Appendix E).
Furthermore, the sensitivity analysis showed that the
percentage of tested individuals did not influence the
shape of the ECR profile. When data on the daily num-
ber of tests and the percentage of positive test would be
available, this could help improve the estimation of ρ,

Fig. 4 Observed and estimated number of daily new confirmed infections. The daily counts ΔY(t) (points) are presented together with the
estimated expected daily new counts from our Poisson regression model (continuous line). Colors are again representative of countries (following
the legend in Fig. 2). Furthermore, 95% prediction intervals are presented based on 10,000 simulations assuming multivariate normality of the
maximum-likelihood estimates of bαi
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but this type of information is not always provided by
each country.
The main strength of our work is the data-oriented

approach: we focused on the information present in the
data and modelled it with an extended version of a well-
known epidemic disease model, based on a limited num-
ber of assumptions. The data demonstrated essential
change points in ECR and the sensitivity analysis dem-
onstrated that our assumptions have little influence,
making the ECR profile trustworthy. This solid ECR pro-
file could then be connected to moments at which gov-
ernments implemented measures, evaluating direct and
delayed effects. We believe that such approaches are
more valuable than the approaches used so far, since the
data collection does not satisfy assumptions that are nor-
mally valid in other areas of epidemiological research.
We did not build a model that related interventions to

the ECR. Therefore, our approach cannot be used to
predict future evolution of the ECR. Although we esti-
mated that the first set of governmental interventions
had an immediate causal effect, the causal pathway of
the first measures remains unclear. This set of measures
might have made citizens realize the severity of the situ-
ation, which consequently made them reduce their social
activity [27]. This would confound the effect estimates
of the physical constraints introduced by the interven-
tions and should thus not be overlooked. When govern-
ments would have decided to relax these interventions,
the ECR might have increased both as a direct result of
the vanishing physical restrictions, and indirectly via the
relaxation in the behavior of citizens. As a result, the
ECR before the intervention was implemented can ser-
iously differ from the ECR after the same intervention is
lifted again, this complexity cannot be captured with

simple modelling. Prediction studies for exit strategies
presenting counterfactual scenarios [1, 28–31] should
therefore be dealt with caution. Our methodology can
also be used to study the effect of the relaxations, but
one should adjust the monotonicity assumption by
assuming a non-decreasing ECR.

Conclusions
With our approach and the data of multiple European
countries, we have been able to estimate country-specific
change points in the ECR without incorporating a priori
information on the governmental interventions. There-
after, we compared the change points in the ECR
profiles with the time points measures were taken. An
overview of this comparative study is presented in
Table 3. In this comparison, we have showed an imme-
diate influence of banning events and closing schools on
the spread of the virus, and a somewhat delayed effect of
the full lockdown. The latter illustrates once more that
effective intervention depends on the compliance of
civilians. Closing bars and restaurants, in addition to the
initial measures, seemed to have only a limited effect
instead.
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Immediate change. Delayed change. 
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